Part Number Hot Search : 
SR205 10EZ15 DE5PC3 PC2408 NS320 PD2503 L6599AD 6321F
Product Description
Full Text Search
 

To Download ADG1438 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Serially Controlled, 15 V/+12 V/5 V, 8-Channel/ 4-Channel, iCMOS Multiplexers/Matrix Switches
ADG1438/ADG1439
FEATURES
Serial interface up to 50 MHz SDO daisy-chaining option 9.5 on resistance @ 25C 1.6 on-resistance flatness Fully specified at 15 V/+12 V/5 V 3 V logic-compatible inputs Rail-to-rail operation 20-lead TSSOP and 20-lead ,4 mm x 4 mm LFCSP packages
FUNCTIONAL BLOCK DIAGRAM
ADG1438
S1 S1A DA S4A D S1B DB S8 INPUT SHIFT REGISTER SDO S4B INPUT SHIFT REGISTER
08496-001
ADG1439
APPLICATIONS
Relay replacement Audio and video routing Automatic test equipment Data acquisition systems Temperature measurement systems Avionics Battery-powered systems Communication systems Medical equipment
SDO
08496-002
SCLK SYNC DIN RESET
SCLK SYNC DIN RESET
Figure 1.
Figure 2.
GENERAL DESCRIPTION
The ADG1438 and ADG1439 are CMOS analog matrix switches with a serially controlled 3-wire interface. The ADG1438 is an 8-channel matrix switch, and the ADG1439 is a dual 4-channel matrix switch. The ADG1438/ADG1439 use a versatile 3-wire serial interface that operates at clock rates of up to 50 MHz and is compatible with standard SPI, QSPITM, MICROWIRETM, and DSP interface standards. The output of the shift register, SDO, enables a number of the ADG1438/ADG1439 parts to be daisy-chained. On power-up, the internal shift register contains all zeros, and all switches are in the off state. Each switch conducts equally well in both directions when on, making these parts suitable for both multiplexing and demultiplexing applications. Because each switch is turned on or off by a separate bit, these parts can also be configured as a type of switch array, where any, all, or none of the eight switches can be closed at any time. The input signal range extends to the supply rails. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. iCMOS(R) construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.
PRODUCT HIGHLIGHTS
1. 2. 3. 4. 50 MHz serial interface. 9.5 on resistance. 1.6 on-resistance flatness. 3 V logic-compatible digital input, VINH = 2.0 V, VINL = 0.8 V.
Table 1. Related Devices
Part No. ADG1408/ADG1409 Description Low on resistance, parallel interface, 4-/8-channel 15 V multiplexers
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2009 Analog Devices, Inc. All rights reserved.
ADG1438/ADG1439 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 15 V Dual Supply ....................................................................... 3 12 V Single Supply ........................................................................ 5 5 V Dual Supply ......................................................................... 7 Continuous Current per Channel .............................................. 8 Timing Characteristics ................................................................ 9 Timing Diagram ........................................................................... 9 Absolute Maximum Ratings.......................................................... 10 Thermal Resistance .................................................................... 10 ESD Caution................................................................................ 10 Pin Configurations and Function Descriptions ......................... 11 Typical Performance Characteristics ........................................... 13 Test Circuits ..................................................................................... 16 Terminology .................................................................................... 18 Theory of Operation ...................................................................... 19 Serial Interface ............................................................................ 19 Input Shift Register .................................................................... 19 Power-On Reset .......................................................................... 19 Daisy-Chaining ........................................................................... 19 Outline Dimensions ....................................................................... 20 Ordering Guide .......................................................................... 20
REVISION HISTORY
10/09--Revision 0: Initial Version
Rev. 0 | Page 2 of 20
ADG1438/ADG1439 SPECIFICATIONS
15 V DUAL SUPPLY
VDD = +15 V 10%, VSS = -15 V 10%, VL = 2.7 V to 5.5 V, GND = 0 V, unless otherwise noted. Table 2.
Parameter ANALOG SWITCH Analog Signal Range On Resistance (RON) +25C -40C to +85C -40C to +125C VSS to VDD 9.5 11.5 0.55 1 1.6 1.9 LEAKAGE CURRENTS Source Off Leakage, IS (Off ) Drain Off Leakage, ID (Off ) ADG1438 ADG1439 Channel On Leakage, ID, IS (On) DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current Digital Input Capacitance, CIN LOGIC OUTPUTS (SDO) Output Low Voltage, VOL 1 High Impedance Leakage Current High Impedance Output Capacitance1 DYNAMIC CHARACTERISTICS1 Break-Before-Make Time Delay, tBBM Transition Time, tTRANSITION Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) 0.05 0.15 0.05 0.25 0.25 0.01 0.3 14 16 Unit V typ max typ max typ max nA typ nA max nA typ nA max nA max nA typ nA max V min V max A typ A max pF typ V max V max A typ A max pF typ VDD = +16.5 V, VSS = -16.5 V. VS = 10 V, VD = 10 V; see Figure 28. VS = 10 V, VD = 10 V; see Figure 28. Test Conditions/Comments
VDD = +13.5 V, VSS = -13.5 V, VS = 10 V, IS = -10 mA; see Figure 27. VDD = +13.5 V, VSS = -13.5 V, VS = 10 V, IS = -10 mA. VDD = +13.5 V, VSS = -13.5 V, VS = 10 V, IS = -10 mA.
On-Resistance Match Between Channels (RON) On-Resistance Flatness (RFLAT(ON))
1.5
1.7
2.15
2.3
1 3 1.5 3
2 12 6 12 2.0 0.8
VS = VD = 10 V; see Figure 29.
0.001 0.1 4 0.4 0.6 0.001 1 4
VIN = VGND or VL.
ISINK = 3 mA. ISINK = 6 mA.
55 30 80 100 4 -70 -70 0.057 120 130
ns typ ns min ns typ ns max pC typ dB typ dB typ % typ
RL = 100 , CL = 35 pF. VS1 = VS2 = 10 V; see Figure 31. RL = 100 , CL = 35 pF. VS = 10 V; see Figure 30. VS = 0 V, RS = 0 , CL = 1 nF; see Figure 32. RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 33. RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 34. RL = 110 , 15 V p-p, f = 20 Hz to 20 kHz; see Figure 36.
Rev. 0 | Page 3 of 20
ADG1438/ADG1439
Parameter -3 dB Bandwidth ADG1438 ADG1439 Insertion Loss CS (Off ) CD (Off ) ADG1438 ADG1439 CD, CS (On) ADG1438 ADG1439 POWER REQUIREMENTS IDD IL Inactive IL Active - 30 MHz +25C 82 130 0.7 9 58 28 286 139 0.001 1 0.3 1 0.26 0.3 IL Active - 50 MHz 0.42 0.5 ISS VDD/VSS
1
-40C to +85C
-40C to +125C
Unit MHz typ MHz typ dB typ pF typ pF typ pF typ pF typ pF typ A typ A max A typ A max mA typ mA max mA typ mA max A typ A max V min/Vmax
Test Conditions/Comments RL = 50 , CL = 5 pF; see Figure 35.
RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 35. f = 1 MHz. f = 1 MHz. f = 1 MHz. f = 1 MHz. f = 1 MHz. VDD = +16.5 V, VSS = -16.5 V. Digital inputs = 0 V or VL. Digital inputs = 0 V or VL. Digital inputs toggle between 0 V and VL. Digital inputs toggle between 0 V and VL. Digital inputs = 0 V or VL.
0.35
0.55 1 4.5/16.5
0.001
Guaranteed by design, not subject to production test.
Rev. 0 | Page 4 of 20
ADG1438/ADG1439
12 V SINGLE SUPPLY
VDD = 12 V 10%, VSS = 0 V, VL = 2.7 V to 5.5 V, GND = 0 V, unless otherwise noted. Table 3.
Parameter ANALOG SWITCH Analog Signal Range On Resistance (RON) +25C -40C to +85C -40C to +125C 0 to VDD 18 21.5 0.55 1.2 On-Resistance Flatness (RFLAT(ON)) 5 6 LEAKAGE CURRENTS Source Off Leakage, IS (Off ) 0.02 0.15 0.02 0.25 0.25 0.05 0.3 1 2 6.9 7.3 26 28.5 Unit V typ max typ max typ max nA typ nA max nA typ nA max nA max nA typ nA max V min V max A typ A max pF typ V max V max A typ A max pF typ VDD = 10.8 V. VS = 1 V/10 V, VD = 10 V/1 V; see Figure 28. VS = 1 V/10 V, VD = 10 V/1 V; see Figure 28. VDD = 10.8 V, VSS = 0 V; VS = 0 V to 10 V, IS = -10 mA. Test Conditions/Comments
VDD = 10.8 V, VSS = 0 V; VS = 0 V to 10 V, IS = -10 mA; see Figure 27. VDD = 10.8 V, VSS = 0 V; VS = 0 V to 10 V, IS = -10 mA.
On-Resistance Match Between Channels (RON)
1.6
1.8
Drain Off Leakage, ID (Off ) ADG1438 ADG1439 Channel On Leakage, ID, IS (On) DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current Digital Input Capacitance, CIN LOGIC OUTPUTS (SDO) Output Low Voltage, VOL 1 High Impedance Leakage Current High Impedance Output Capacitance1 DYNAMIC CHARACTERISTICS1 Break-Before-Make Time Delay, tBBM Transition Time, tTRANSITION Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG1438 ADG1439
3 1.5 3
12 6 12 2.0 0.8
VS = VD = 1 V or 10 V; see Figure 29.
0.001 0.1 4 0.4 0.6 0.001 1 4
VIN = VGND or VL.
ISINK = 3 mA. ISINK = 6 mA.
115 60 155 195 7 -70 -70 235 260
ns typ ns min ns typ ns max pC typ dB typ dB typ
RL = 100 , CL = 35 pF. VS1 = VS2 = 8 V; see Figure 31. RL = 100 , CL = 35 pF. VS = 8 V; see Figure 30. VS = 6 V, RS = 0 , CL = 1 nF; see Figure 32. RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 33. RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 34. RL = 50 , CL = 5 pF; see Figure 35.
58 105
Rev. 0 | Page 5 of 20
MHz typ MHz typ
ADG1438/ADG1439
Parameter Insertion Loss CS (Off ) CD (Off ) ADG1438 ADG1439 CD, CS (On) ADG1438 ADG1439 POWER REQUIREMENTS IDD IL Inactive IL Active - 30 MHz +25C 1.3 14 86 42 295 145 0.001 1 0.3 1 0.26 0.3 IL Active - 50 MHz 0.42 0.5 ISS VDD
1
-40C to +85C
-40C to +125C
Unit dB typ pF typ pF typ pF typ pF typ pF typ A typ A max A typ A max mA typ mA max mA typ mA max A typ A max V min/Vmax
Test Conditions/Comments RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 35. f = 1 MHz. f = 1 MHz. f = 1 MHz. f = 1 MHz. f = 1 MHz. VDD = 13.2 V. Digital inputs = 0 V or VL. Digital inputs = 0 V or VL. Digital inputs toggle between 0 V and VL. Digital inputs toggle between 0 V and VL. Digital inputs = 0 V or VL.
0.35
0.55 1 5/16.5
0.001
Guaranteed by design, not subject to production test.
Rev. 0 | Page 6 of 20
ADG1438/ADG1439
5 V DUAL SUPPLY
VDD = +5 V 10%, VSS = -5 V 10%, VL = 2.7 V to VDD, GND = 0 V, unless otherwise noted. Table 4.
Parameter ANALOG SWITCH Analog Signal Range On Resistance (RON) +25C -40C to +85C -40C to +125C VSS to VDD 21 25 0.6 1.3 On-Resistance Flatness (RFLAT(ON)) 5.2 6.4 LEAKAGE CURRENTS Source Off Leakage, IS (Off ) Drain Off Leakage, ID (Off ) ADG1438 ADG1439 Channel On Leakage, ID, IS (On) DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current Digital Input Capacitance, CIN LOGIC OUTPUTS (SDO) Output Low Voltage, VOL 1 High Impedance Leakage Current High Impedance Output Capacitance1 DYNAMIC CHARACTERISTICS1 Break-Before-Make Time Delay, tBBM Transition Time, tTRANSITION Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) -3 dB Bandwidth ADG1438 ADG1439 Insertion Loss CS (Off ) 0.02 0.15 0.02 0.25 0.25 0.05 0.3 1 3 1.5 3 2 12 6 12 2.0 0.8 0.001 0.1 4 0.4 0.6 0.001 1 4 nA typ nA max nA typ nA max nA max nA typ nA max V min V max A typ A max pF typ V max V max A typ A max pF typ 7.3 7.6 29 32 Unit V typ max typ max typ max VDD = +5.5 V, VSS = -5.5 V. VS = 4.5 V, VD = 4.5 V; see Figure 28. VS = 4.5 V, VD = 4.5 V; see Figure 28. Test Conditions/Comments
VDD = +4.5 V, VSS = -4.5 V, VS = 4.5 V, IS = -10 mA; see Figure 27. VDD = +4.5 V, VSS = -4.5 V, VS = 4.5V, IS = -10 mA. VDD = +4.5 V, VSS = -4.5 V, VS = 4.5 V, IS = -10 mA.
On-Resistance Match Between Channels (RON)
1.7
1.9
VS = VD = 4.5 V; see Figure 29.
VIN = VGND or VL.
ISINK = 3 mA. ISINK = 6 mA.
150 80 200 230 5 -70 -70 0.14 315 350
ns typ ns min ns typ ns max pC typ dB typ dB typ % typ
RL = 100 , CL = 35 pF. VS1 = VS2 = 3 V; see Figure 31. RL = 100 , CL = 35 pF. VS = 3 V; see Figure 30. VS = 0 V, RS = 0 , CL = 1 nF; see Figure 32. RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 33. RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 34. RL = 110 , 5 V p-p, f = 20 Hz to 20 kHz; see Figure 36. RL = 50 , CL = 5 pF; see Figure 35.
62 116 1.2 12
MHz typ MHz typ dB typ pF typ
RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 35. f = 1 MHz.
Rev. 0 | Page 7 of 20
ADG1438/ADG1439
Parameter CD (Off ) ADG1438 ADG1439 CD, CS (On) ADG1438 ADG1439 POWER REQUIREMENTS IDD IL Inactive IL Active - 30 MHz IL Active - 50 MHz ISS VDD/VSS
1
+25C 76 38 311 151 0.001
-40C to +85C
-40C to +125C
Unit pF typ pF typ pF typ pF typ A typ A max A typ A max mA typ mA max mA typ mA max A typ A max V min/Vmax
Test Conditions/Comments f = 1 MHz. f = 1 MHz. f = 1 MHz. f = 1 MHz. VDD = +5.5 V, VSS = -5.5 V. Digital inputs = 0 V or VL. Digital inputs = 0 V or VL. Digital inputs toggle between 0 V and VL. Digital inputs toggle between 0 V and VL. Digital inputs = 0 V or VL.
1 0.3 1 0.26 0.3 0.42 0.5 0.001 1 4.5/16.5 0.55 0.35
Guaranteed by design, not subject to production test.
CONTINUOUS CURRENT PER CHANNEL
Table 5. ADG1438, One Channel On
Parameter CONTINUOUS CURRENT PER CHANNEL 1 15 V Dual Supply 20-Lead TSSOP (JA = 112.6C/W) 20-Lead LFCSP (JA = 30.4C/W) 12 V Single Supply 20-Lead TSSOP (JA = 112.6C/W) 20-Lead LFCSP (JA = 30.4C/W) 5 V Dual Supply 20-Lead TSSOP (JA = 112.6C/W) 20-Lead LFCSP (JA = 30.4C/W)
1
25C
85C
125C
Unit
Test Conditions/Comments VDD = +13.5 V, VSS = -13.5 V
169 295 161 281 122 214
97 139 93 135 76 114
48 55 47 54 43 51
mA max mA max VDD = 10.8 V, VSS = 0 V mA max mA max VDD = +4.5 V, VSS = -4.5 V mA max mA max
Guaranteed by design, not subject to production test.
Table 6. ADG1439, One Channel On Per Multiplexer
Parameter CONTINUOUS CURRENT PER CHANNEL 1 15 V Dual Supply 20-Lead TSSOP (JA = 112.6C/W) 20-Lead LFCSP (JA = 30.4C/W) 12 V Single Supply 20-Lead TSSOP (JA = 112.6C/W) 20-Lead LFCSP (JA = 30.4C/W) 5 V Dual Supply 20-Lead TSSOP (JA = 112.6C/W) 20-Lead LFCSP (JA = 30.4C/W)
1
25C
85C
125C
Unit
Test Conditions/Comments VDD = +13.5 V, VSS = -13.5 V
125 220 119 210 159 90
77 116 74 112 93 59
43 52 42 51 47 37
mA max mA max VDD = 10.8 V, VSS = 0 V mA max mA max VDD = +4.5 V, VSS = -4.5 V mA max mA max
Guaranteed by design, not subject to production test.
Rev. 0 | Page 8 of 20
ADG1438/ADG1439
TIMING CHARACTERISTICS
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2 (see Figure 3). VDD = 4.5 V to 16.5 V; VSS = -16.5 V to 0 V; VL = 2.7 V to 5.5 V or VDD (whichever is less); GND = 0 V; all specifications TMIN to TMAX, unless otherwise noted. 1 Table 7.
Parameter t1 2 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 3 t12
1 2
Limit at TMIN, TMAX 20 9 9 5 5 5 5 15 5 5 40 15
Unit ns min ns min ns min ns min ns min ns min ns min ns min ns min ns min ns max ns min
Conditions/Comments SCLK cycle time SCLK high time SCLK low time SYNC to SCLK active edge setup time Data setup time Data hold time SCLK active edge to SYNC rising edge Minimum SYNC high time SYNC rising edge to next SCLK active edge ignored SCLK active edge to SYNC falling edge ignored SCLK rising edge to SDO valid Minimum RESET pulse width
Guaranteed by design and characterization, not production tested. Maximum SCLK frequency is 50 MHz at VDD = 4.5 V to 16.5 V; VSS = -16.5 V to 0 V; VL = 2.7 V to 5.5 V or VDD (whichever is less); GND = 0 V. 3 Measured with the 1 k pull-up resistor to VL and 20 pF load. t11 determines the maximum SCLK frequency in daisy-chain mode.
TIMING DIAGRAM
t10
SCLK
t1
t9
t8
SYNC
t4
t3
t2
t7
t5
DIN DB7
t6
DB0
RESET
t12
Figure 3. Serial Write Operation
t1
SCLK 8 16
t8
SYNC
t4
t3
t2
t9 t7
t5
DIN DB7
t6
DB0 DB7 DB0
INPUT WORD FOR DEVICE N
INPUT WORD FOR DEVICE N + 1
t11
SDO DB7 DB0
UNDEFINED
INPUT WORD FOR DEVICE N
08496-004
Figure 4. Daisy-Chain Timing Diagram
Rev. 0 | Page 9 of 20
08496-003
ADG1438/ADG1439 ABSOLUTE MAXIMUM RATINGS
TA = 25C, unless otherwise noted. Table 8.
Parameter VDD to VSS VDD to GND VSS to GND VL to GND Analog Inputs 1 Digital Inputs1 Continuous Current, Sx or Dx Pins Peak Current, Sx or Dx Pins (Pulsed at 1 ms, 10% Duty Cycle Max) TSSOP LFCSP Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature Reflow Soldering Peak Temperature (Pb-Free) Time at Peak Temperature
1
Rating 35 V -0.3 V to +25 V +0.3 V to -25 V -0.3 V to +7 V VSS - 0.3 V to VDD + 0.3 V or 30 mA, whichever occurs first GND - 0.3 V to VL + 0.3 V or 30 mA, whichever occurs first Table 5 and Table 6 specifications + 15%
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating can be applied at any one time.
THERMAL RESISTANCE
Table 9. Thermal Resistance
Package Type 20 Lead TSSOP (4-Layer Board) 20-Lead LFCSP (4-Layer Board and Exposed Paddle Soldered to VSS) JA 112.6 30.4 JC 50 N/A Unit C/W C/W
300 mA 400 mA -40C to +125C -65C to +150C 150C 260(+0/-5)C 10 sec to 40 sec
ESD CAUTION
Overvoltages at the analog and digital inputs are clamped by internal diodes. Current should be limited to the maximum ratings given.
Rev. 0 | Page 10 of 20
ADG1438/ADG1439 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
SCLK 1 VDD 2 DIN 3 GND 4 NC 5 S1 6 S2 7 S3 8 S4 9 D 10
20 SYNC 19
VL SDO
17 RESET TOP VIEW (Not to Scale) 16 VSS 15 14 13 12 11
ADG1438
18
S5 S6 S7 S8
08496-005
DIN GND S1 S2 S3
1 2 3 4 5
20 19 18 17 16
PIN 1 INDICATOR
VDD SCLK SYNC VL SDO
ADG1438
TOP VIEW (Not to Scale)
15 RESET 14 VSS 13 S5 12 S6 11 S7
08496-106
NC
NC = NO CONNECT
NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD TIED TO SUBSTRATE, VSS.
Figure 5. ADG1438 Pin Configuration (TSSOP)
Figure 6. ADG1438 Pin Configuration (LFCSP)
Table 10. ADG1438 Pin Function Descriptions
Pin No. TSSOP LFCSP 1 19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 1 2 7 3 4 5 6 8 9 10 11 12 13 14 15 16 Mnemonic SCLK VDD DIN GND NC S1 S2 S3 S4 D NC S8 S7 S6 S5 VSS RESET SDO Description Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates of up to 50 MHz. Most Positive Power Supply Potential. Serial Data Input. This device has an 8-bit shift register. Data is clocked into the register on the falling edge of the serial clock input. Ground (0 V) Reference. No Connect. Source Terminal 1. Can be an input or an output. Source Terminal 2. Can be an input or an output. Source Terminal 3. Can be an input or an output. Source Terminal 4. Can be an input or an output. Drain Terminal. Can be an input or an output. No Connect. Source Terminal 8. Can be an input or an output. Source Terminal 7. Can be an input or an output. Source Terminal 6. Can be an input or an output. Source Terminal 5. Can be an input or an output. Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground. Active Low Logic Input. When this pin is low, all switches are open, and the appropriate registers are cleared to 0. Serial Data Output. Can be used for daisy-chaining a number of these devices together or for reading back the data in the shift register for diagnostic purposes. The serial data is transferred on the rising edge of SCLK and is valid on the falling edge of the clock. This is an open-drain output that should be pulled to the VL supply with an external 1 k resistor. Logic Power Supply Input. Operates from 2.7 V to 5.5 V. Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling edges of the following clocks. Taking SYNC high updates the switch condition. The exposed pad is tied to the substrate, VSS.
19 20
17 18
VL SYNC
EPAD
Rev. 0 | Page 11 of 20
S4 NC D NC S8
6 7 8 9 10
ADG1438/ADG1439
20 19 18 17 16
DIN GND S1A S2A S3A 1 2 3 4 5
PIN 1 INDICATOR
SCLK 1 VDD 2 DIN 3 GND 4 NC 5 S1A 6 S2A 7 S3A 8 S4A 9 DA 10
20 SYNC 19
VL SDO
17 RESET TOP VIEW (Not to Scale) 16 VSS 15 14 13 12 11
ADG1439
18
VDD SCLK SYNC VL SDO
ADG1439
TOP VIEW (Not to Scale)
S1B S2B S3B S4B
08496-107
15 14 13 12 11
RESET VSS S1B S2B S3B
08496-108
DB
NC = NO CONNECT
NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD TIED TO SUBSTRATE, VSS.
Figure 7. ADG1439 Pin Configuration (TSSOP)
Figure 8. ADG1439 Pin Configuration (LFCSP)
Table 11. ADG1439 Pin Function Descriptions
Pin No. TSSOP LFCSP 1 19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 1 2 8 3 4 5 6 7 9 10 11 12 13 14 15 16 Mnemonic SCLK VDD DIN GND NC S1A S2A S3A S4A DA DB S4B S3B S2B S1B VSS RESET SDO Description Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates of up to 50 MHz. Most Positive Power Supply Potential. Serial Data Input. This device has an 8-bit shift register. Data is clocked into the register on the falling edge of the serial clock input. Ground (0 V) Reference. No Connect. Source Terminal 1A. Can be an input or an output. Source Terminal 2A. Can be an input or an output. Source Terminal 3A. Can be an input or an output. Source Terminal 4A. Can be an input or an output. Drain Terminal A. Can be an input or an output. Drain Terminal B. Can be an input or an output. Source Terminal 4B. Can be an input or an output. Source Terminal 3B. Can be an input or an output. Source Terminal 2B. Can be an input or an output. Source Terminal 1B. Can be an input or an output. Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground. Active Low Logic Input. When this pin is low, all switches are open, and appropriate registers are cleared to 0. Serial Data Output. Can be used for daisy-chaining a number of these devices together or for reading back the data in the shift register for diagnostic purposes. The serial data is transferred on the rising edge of SCLK and is valid on the falling edge of the clock. This is an open-drain output that should be pulled to the VL supply with an external 1 k resistor. Logic Power Supply Input. Operates from 2.7 V to 5.5 V. Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling edges of the following clocks. Taking SYNC high updates the switch condition. The exposed pad is tied to the substrate, VSS.
19 20
17 18
VL SYNC
EPAD
Rev. 0 | Page 12 of 20
S4A 6 DA 7 NC 8 DB 9 S4B 10
ADG1438/ADG1439 TYPICAL PERFORMANCE CHARACTERISTICS
16 14 12 VDD = +10V VSS = -10V 18 VDD = +13.5V VSS = -13.5V 15 VDD = +12V VSS = -12V
ON RESISTANCE ()
ON RESISTANCE ()
10 8 6 4 2 VDD = +15V VSS = -15V VDD = +16.5V VSS = -16.5V
12
TA = +125C TA = +85C TA = +25C
9
6
TA = -40C
3 TA = 25C IS = -10mA VDD = +15V VSS = -15V
08496-006
-1.5
1.5
4.5
7.5
10.5 13.5 16.5
-10
-5
0 VS, VD (V)
5
10
15
VS, VD (V)
Figure 9. On Resistance as a Function of VD (VS), Dual Supply
35 30 25 20 15 10 5 0 -7 TA = 25C IS = -10mA
08496-007
Figure 12. On Resistance as a Function of VD (VS) for Different Temperatures, 15 V Dual Supply
30
VDD = +3.V VSS = -3.V 25 VDD = +4.5V VSS = -4.5V VDD = +5.0V VSS = -5.0V
ON RESISTANCE ()
ON RESISTANCE ()
20
TA = +125C
15
TA = +85C TA = +25C
VDD = +7V VSS = -7V
VDD = +5.5V VSS = -5.5V
10
TA = -40C
5 VDD = +5V VSS = -5V
-5
-3
-1
1
3
5
7
-4
-3
-2
-1
0 VS, VD (V)
1
2
3
4
5
VS, VD (V)
Figure 10. On Resistance as a Function of VD (Vs), Dual Supply
40 35 30 VDD = +5V VSS = 0V 20 VDD = +8V VSS = 0V VDD = +12V VSS = 0V 25
Figure 13. On Resistance as a Function of VD (VS) for Different Temperatures, 5 V Dual Supply
ON RESISTANCE ()
ON RESISTANCE ()
25 20 15 10 5 0
TA = +125C 15 TA = +85C 10 TA = +25C TA = -40C 5 VDD = +12V VSS = 0V
VDD = +10.8V VSS = 0V
TA = 25C IS = -10mA 0 1.5 3.0 4.5 6.0
VDD = +15V VSS = 0V 7.5 9.0
VDD = +13.2V VSS = 0V
08496-008
10.5
12.0 13.5
15.0
0
2
4
6 VS, VD (V)
8
10
12
VS, VD (V)
Figure 11. On Resistance as a Function of VD (VS), Single Supply
Figure 14. On Resistance as a Function of VD (VS) for Different Temperatures, 12 V Single Supply
Rev. 0 | Page 13 of 20
08496-011
0
08496-010
0 -5
08496-009
0 -16.5 -13.5 -10.5 -7.5 -4.5
0 -15
ADG1438/ADG1439
1.0 VDD = +15V VSS = -15V VBIAS = +10V/-10V ID, IS (ON) ++ ID (OFF) -+ IS (OFF) +- 0 300 VL = 5.5V 400 500 IDD PER LOGIC INPUT TA= 25C
0.5
LEAKAGE CURRENT (nA)
-0.5
IS (OFF) -+ ID, IS (ON) - -
IDD (A)
200
-1.0
ID (OFF) +-
100 VL = 2.7V 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
08496-018
0
20
40
60
80
100
120
TEMPERATURE (C)
08496-015
-1.5
0
LOGIC LEVEL (V)
Figure 15. Leakage Current as a Function of Temperature, 15 V Dual Supply
10 8
LEAKAGE CURRENT (nA)
50 TA = 25C
Figure 18. IDD vs. Logic Level
VDD = +5V VSS = -5V VBIAS = +4.5V/-4.5V
ID, IS (ON) ++
CHARGE INJECTION (pC)
40 30 20 10 0 -10 -20
08496-016
6 4 2 0 -2 -4 0 20 40
VDD = +5V VSS = -5V VDD = +12V VSS = 0V VDD = +15V VSS = -15V
ID (OFF) -+ IS (OFF) +-
IS (OFF) -+ ID, IS (ON) -- ID (OFF) +- 60 80 TEMPERATURE (C) 100 120
-10
-5
0 VS (V)
5
10
15
Figure 16. Leakage Current as a Function of Temperature, 5 V Dual Supply
10 8
LEAKAGE CURRENT (nA)
Figure 19. Charge Injection vs. Source Voltage
300
VDD = 12V VSS = 0V VBIAS = 1V/10V
ID, IS (ON) ++
250 VDD = +5V, VSS = -5V
6 4 2 0 -2 -4 0 20 40 60 80 TEMPERATURE (C) 100 120 ID, IS (ON) -- ID (OFF) +-
08496-017
200
TIME (ns)
ID (OFF) -+ IS (OFF) +- IS (OFF) -+
150 VDD = +12V, VSS = 0V
100
50
VDD = +15V, VSS = -15V
-40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 17. Leakage Current as a Function of Temperature, 12 V Single Supply
Figure 20. Transition Time vs. Temperature
Rev. 0 | Page 14 of 20
08496-120
0
08496-019
-30 -15
ADG1438/ADG1439
0 TA = 25C VDD = +15V VSS = -15V
INSERTION LOSS (dB)
0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) TA = 25C VDD = +15V VSS = -15V
-20
OFF ISOLATION (dB)
-40
-60
-80
-100
1k
10k
100k
1M
10M
100M
1G
FREQUENCY (Hz)
Figure 21. Off Isolation vs. Frequency
0 TA = 25C VDD = +15V VSS = -15V
0.20 0.18 0.16 0.14 THD + N (%) 0.12 0.10 0.08 0.06 0.04 0.02
Figure 24. ADG1438 On Response vs. Frequency
-20
LOAD = 110 TA = 25C VDD = 5V, VSS = -5V, VS = 5V p-p
CROSSTALK (dB)
-40
-60
-80
VDD = 15V, VSS = -15V, VS = 10V p-p
-100
100k
1M
10M
100M
1G
08496-122
0
5
10 FREQUENCY (kHz)
15
20
FREQUENCY (Hz)
Figure 22. ADG1438 Crosstalk vs. Frequency
0 TA = 25C VDD = +15V VSS = -15V
0
Figure 25. THD + N vs. Frequency
TA = 25C VDD = +15V VSS = -15V NO DECOUPLING CAPACITORS
-20
-20
CROSSTALK (dB)
-40
ACPSRR (dB)
-40
-60
-60 DECOUPLING CAPACITORS -80
-80
-100
-100
100k
1M
10M
100M
1G
08496-123
1k
10k
100k FREQUENCY (Hz)
1M
10M
FREQUENCY (Hz)
Figure 23. ADG1439 Crosstalk vs. Frequency
Figure 26. ACPSRR vs. Frequency
Rev. 0 | Page 15 of 20
08496-127
-120 10k
-120
08496-026
-120 10k
0
08496-124
08496-121
-120
ADG1438/ADG1439 TEST CIRCUITS
V
IS (OFF) A ID (OFF) A
08496-021
ID (ON) NC S D A
08496-022
S
D IDS
08496-020
S
D
VS
VS
VD
NC = NO CONNECT
VD
Figure 27. On Resistance
Figure 28. Off Leakage
Figure 29. On Leakage
VDD VDD
VSS VSS S1 VS1
SYNC
ADG1438*
S2 TO S7 S8 D GND RL 300 VS8 CL 35pF VOUT VS1 VOUT
50%
50%
90%
90%
* SIMILAR CONNECTION FOR ADG1439
tOFF
tON
Figure 30. Switching Times, tON/tOFF
VDD VSS
3V SYNC 0V
VDD
VSS S1 S2 TO S7 S8 VS
VS1 = VS8 OUTPUT
80%
80%
ADG14381
D GND
OUTPUT
100
08496-023
35pF
08496-024
tBBM
1SIMILAR CONNECTION FOR ADG1439.
Figure 31. Break-Before-Make Delay, tBBM
Rev. 0 | Page 16 of 20
ADG1438/ADG1439
VDD VDD 3V SYNC VSS VSS
QINJ = CL x VOUT VOUT SWITCH OFF SWITCH ON VOUT VS
ADG1438 1
RS S D CL 1nF
08496-025
VOUT
INPUT LOGIC GND
1SIMILAR CONNECTION FOR ADG1439.
Figure 32. Charge Injection
VDD 0.1F
VSS 0.1F NETWORK ANALYZER
VDD 0.1F
VSS 0.1F NETWORK ANALYZER
VDD S
VSS
VDD S
VSS
50 D
50 VS VOUT
50 VS D VOUT
ADG1438
GND
RL 50
ADG1438
GND
08496-027
RL 50
OFF ISOLATION = 20 log
VS
INSERTION LOSS = 20 log
VOUT WITH SWITCH VOUT WITHOUT SWITCH
Figure 33. Off Isolation
VDD 0.1F NETWORK ANALYZER VOUT RL 50 VSS 0.1F
VDD VSS
Figure 35. Insertion Loss
VDD S1
VSS
0.1F
0.1F AUDIO PRECISION RS S
D S2 VS
R 50
IN
VDD
VSS
ADG1438
GND
D VIN
VS V p-p RL 10k VOUT
08496-030
ADG1438
GND
CHANNEL-TO-CHANNEL CROSSTALK = 20 log
Figure 34. Channel-to-Channel Crosstalk
08496-028
VOUT VS
Figure 36. THD + Noise
Rev. 0 | Page 17 of 20
08496-029
VOUT
ADG1438/ADG1439 TERMINOLOGY
RON Ohmic resistance between Terminal D and Terminal S. RON Difference between the RON of any two channels. RFLAT(ON) Flatness that is defined as the difference between the maximum and minimum values of on resistance as measured over the specified analog signal range.. IS (Off) Source leakage current when the switch is off. ID (Off) Drain leakage current when the switch is off. ID, IS (On) Channel leakage current when the switch is on. VD (VS) Analog voltage on Terminal D (drain terminal) and Terminal S (source terminals, S1 to S8). CS (Off) Channel input capacitance for off condition. CD (Off) Channel output capacitance for off condition. CD, CS (On) On switch capacitance. CIN Digital input capacitance. tON (EN) Delay time between the 50% and 90% points of the digital input and the switch on condition. tOFF (EN) Delay time between the 50% and 90% points of the digital input and the switch off condition. tTRANSITION Delay time between the 50% and 90% points of the digital input and the switch on condition when switching from one address state to another. tBBM Off time measured between the 80% point of both switches when switching from one address state to another. VINL Maximum input voltage for Logic 0. VINH Minimum input voltage for Logic 1. IINL (IINH) Input current of the digital input. IDD Positive supply current. ISS Negative supply current. Off Isolation A measure of unwanted signal coupling through an off channel. Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching. Bandwidth Frequency at which the output is attenuated by 3 dB. On Response Frequency response of the on switch. Total Harmonic Distortion (THD + N) Ratio of the harmonic amplitude plus noise of the signal to the fundamental. AC Power Supply Rejection Ratio (ACPSRR) A measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR Crosstalk A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. Insertion Loss The loss due to the on resistance of the switch.
Rev. 0 | Page 18 of 20
ADG1438/ADG1439 THEORY OF OPERATION
The ADG1438 and ADG1439 are serially controlled, 8-channel and dual 4-channel matrix switches, respectively. While providing the normal multiplexing and demultiplexing functions, these devices also provide the user with more flexibility as to where a signal can be routed. Each of the eight bits of the 8-bit write corresponds to one switch of the device. Logic 1 in a particular bit position turns the switch on, whereas Logic 0 turns the switch off. Because each switch is independently controlled by an individual bit, this provides the option of having any, all, or none of the switches on. This feature may be particularly useful in the demultiplexing application where the user may wish to direct one signal from the drain to a number of outputs (sources). Care must be taken, however, in the multiplexing situation where a number of inputs may be shorted together (separated only by the small on resistance of the switch). Table 12. ADG1438 Input Shift Register Bit Map1
MSB DB7 S8
1
DB6 S7
DB5 S6
DB4 S5
DB3 S4
DB2 S3
DB1 S2
LSB DB0 S1
Logic 0 = switch off, and Logic 1 = switch on.
Table 13. ADG1439 Input Shift Register Bit Map1
MSB DB7 S4B
1
DB6 S3B
DB5 S2B
DB4 S1B
DB3 S4A
DB2 S3A
DB1 S2A
LSB DB0 S1A
Logic 0 = switch off, and Logic 1 = switch on.
POWER-ON RESET
The ADG1438/ADG1439 contain a power-on reset circuit. On power-up of the device, all switches are off, and the internal shift register is filled with zeros and remains so until a valid write takes place. The part also has a RESET pin. When the RESET pin is low, all switches are off, and the appropriate registers are cleared to 0.
SERIAL INTERFACE
The ADG1438/ADG1439 has a 3-wire serial interface (SYNC, SCLK, and DIN pins) that is compatible with SPI, QSPI, and MICROWIRE interface standards, as well as most DSPs (see Figure 3 for a timing diagram of a typical write sequence). The write sequence begins by bringing the SYNC line low. This enables the input shift register. Data from the DIN line is clocked into the 8-bit input shift register on the falling edge of SCLK. The serial clock frequency can be as high as 50 MHz, making the ADG1438/ADG1439 compatible with high speed DSPs. Data can be written to the shift register in more or fewer than eight bits. In each case, the shift register retains the last eight bits that are written. When all eight bits are written into the shift register, the SYNC line is brought high again. The switches are updated with the new configuration, and the input shift register is disabled. With SYNC held high, the input shift register is disabled so that further data or noise on the DIN line has no effect on the shift register. Data appears on the SDO pin on the rising edge of SCLK, suitable for daisy-chaining or readback, delayed by eight bits.
DAISY-CHAINING
For systems that contain several switches, the SDO pin can be used to daisy-chain several devices together. The SDO pin can also be used for diagnostic purposes and to provide serial readback where the user wants to read back the switch contents. The SDO pin is an open-drain output that should be pulled to the VL supply with an external resistor. The SCLK is continuously applied to the input shift register when SYNC is low. If more than eight clock pulses are applied, the data ripples out of the shift register and appears on the SDO line. This data is clocked out on the rising edge of SCLK and is valid on the falling edge. By connecting this line to the DIN input on the next switch in the chain, a multiswitch interface is constructed. Each switch in the system requires eight clock pulses; therefore, the total number of clock cycles must equal 8N, where N is the total number of devices in the chain. When the serial transfer to all devices is complete, SYNC is taken high. This prevents any further data from being clocked into the input shift register. The serial clock can be a continuous or a gated clock. A continuous SCLK source can be used only if SYNC can be held low for the correct number of clock cycles. In gated clock mode, a burst clock containing the exact number of clock cycles must be used, and SYNC must be taken high after the final clock to latch the data. Gated clock mode reduces power consumption by reducing the active clock time.
INPUT SHIFT REGISTER
The input shift register is eight bits wide, as shown in Table 12 and Table 13. Each bit controls one switch. These data bits are transferred to the switch register on the rising edge of SYNC.
Rev. 0 | Page 19 of 20
ADG1438/ADG1439 OUTLINE DIMENSIONS
6.60 6.50 6.40
20
11
4.50 4.40 4.30 6.40 BSC
1 10
PIN 1 0.65 BSC 0.15 0.05 COPLANARITY 0.10 0.30 0.19 1.20 MAX 0.20 0.09 8 0 0.75 0.60 0.45
SEATING PLANE
COMPLIANT TO JEDEC STANDARDS MO-153-AC
Figure 37. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20) Dimensions shown in millimeters
4.00 BSC SQ 0.60 MAX
0.60 MAX
15
16
20 1
PIN 1 INDICATOR
2.65 2.50 SQ 2.35
5
PIN 1 INDICATOR
3.75 BSC SQ
0.50 BSC
EXPOSED PAD
(BOTTOM VIEW)
TOP VIEW 0.80 MAX 0.65 TYP
0.50 0.40 0.30
11
10
6
0.25 MIN
1.00 0.85 0.80 SEATING PLANE
12 MAX
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1
Figure 38. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 4 mm x 4 mm Body, Very Thin Quad (CP-20-4) Dimensions shown in millimeters
ORDERING GUIDE
Model ADG1438BRUZ 1 ADG1438BRUZ-REEL71 ADG1438BCPZ-REEL71 ADG1439BRUZ1 ADG1439BRUZ-REEL71 ADG1439BCPZ-REEL71
1
Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C
Package Description 20-Lead Thin Shrink Small Outline Package [TSSOP] 20-Lead Thin Shrink Small Outline Package [TSSOP] 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 20-Lead Thin Shrink Small Outline Package [TSSOP] 20-Lead Thin Shrink Small Outline Package [TSSOP] 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
090408-B
0.30 0.23 0.18
0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
Package Option RU-20 RU-20 CP-20-4 RU-20 RU-20 CP-20-4
Z = RoHS Compliant Part.
(c)2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08496-0-10/09(0)
Rev. 0 | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of ADG1438

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X